發布日期:2022-04-27 點擊率:90
近年來,出于節約能源的迫切需要和產品質量不斷提高的要求,大容量電動機的高壓變頻調速技術得到了廣泛的應用,在國內,基本覆蓋了電力、冶金、石油、化工、造紙等主要行業。因此國內變頻調速系統的研究非常活躍,主要的問題是利用耐壓有限的功率開關器件實現高壓變頻調速,解決的辦法是把低壓的開關器件以一定的拓撲結構連接,用低電壓串聯形成高電壓。傳統的控制系統采用集中式控制,系統安裝調試比較復雜,功能相對局限且不易擴展,很難實現控制的智能化。而分布式控制系統結構簡單,數據處理方式靈活,有很強的擴展性,其模塊化的結構具有很強的容錯性,因此是高壓變頻系統實現智能控制的發展趨勢。
針對傳統控制系統過于復雜的缺點,本文提出一種高壓變頻的分布式控制策略,系統采用“中央控制單元-總線-分布控制單元”的分布式控制。
1 分布式控制的原理
設計的高壓變頻器要求產生的相電壓的變化在0~4 320V范圍之內,系統使用低壓功率器件,采用電壓串聯疊加的方法實現高壓[1],其高壓變頻系統實現原理如圖1所示。圖中,24個分布的單元,每個單元均由相同的控制和驅動系統組成。控制單元采用PWM控制方式調節驅動單元的輸出電壓使之在0~540V之間變化。24個單元分成三相,每相由8個單元串聯連接,產生的相電壓的變化在0~4 320V范圍。三組功率單元星形聯相形成分布式控制的拓撲結構,以低壓的功率器件實現高壓輸出。每組疊加出用于電機驅動的一相電壓波形,相電壓之間的相位差為120°。這樣,線電壓可以控制在0~7500V,以適應高壓電機的控制要求。
分布單元驅動電路如圖2所示,由三相橋式整流電路和方波逆變器組成。兩個方波逆變器的輸出電壓uao和ubo是脈寬可調的方波,而兩橋臂中點a和b之間的電壓uab是uao和ubo方波電壓的疊加,即uab=uao-ubo。假定uao和ubo之間的相位角之差為180°+Φ,則調節Φ角即可調節輸出電壓的脈寬,因而使輸出電壓的基波分量和諧波分量的幅值也發生變化。這樣,既改善了輸出電壓的波形,也達到了調節輸出電壓的目的。
2 分布式控制系統的設計
本文設計的高壓變頻控制系統結構如圖3所示。分布式系統由中央控制單元、CAN總線光纖通信部分和分布單元控制器三部分組成。中央控制單元以CAN總線和分布單元控制器建立通信,建立任務分工,協調控制系統的運行。以分布式控制系統代替傳統的集中式的控制系統,解決了集中式控制方式在數據就地采集、處理和獨立控制等方面的問題,減少了中央處理單元的負擔,而且擴展了系統功能,實現了高壓變頻器的遠程智能化監視和控制,改進了系統的性能,同時也更加符合工業現場的應用;由于CAN總線的通信采用光纖作為介質,中央控制單元及分布式單元通過兩根光纖和HUB連接即可完成系統的組裝;由于分布單元結構相同,可采用硬件ID軟件識別的方法使系統的可替換性和伸縮性增強。
2.1中央控制單元
基于ARM的嵌入式控制系統為核心的中央控制單元主要包括:I/O模塊、A/D數據采集模塊、液晶顯示模塊、GPRS遠程通信模塊、CAN總線通信模塊等外圍的功能模塊,其結構如圖4所示。采用分布式系統的功能劃分,并且利用ARM的32位的運算能力設計的中央控制單元所要執行的任務包括:高壓變頻系統電源