<rt id="m4md3"></rt>
  • <bdo id="m4md3"><meter id="m4md3"></meter></bdo>
  • <label id="m4md3"></label>
      <center id="m4md3"><optgroup id="m4md3"></optgroup></center>
      產(chǎn)品分類

      當(dāng)前位置: 首頁 > 工業(yè)控制產(chǎn)品 > 氣動(dòng)產(chǎn)品 > 執(zhí)行器件 > 抓取系統(tǒng)

      類型分類:
      科普知識(shí)
      數(shù)據(jù)分類:
      抓取系統(tǒng)

      基于視覺與超聲技術(shù)機(jī)器人自動(dòng)識(shí)別抓取系統(tǒng)

      發(fā)布日期:2022-10-03 點(diǎn)擊率:114

      摘要:提出了滿足機(jī)器人裝配作業(yè)中對工件進(jìn)行可靠識(shí)別與抓取的信號(hào)處理技術(shù)及檢測方法,對能準(zhǔn)確描述物體形狀的特征提取方法進(jìn)行了研究,設(shè)計(jì)了一種基于視覺與超聲技術(shù)的機(jī)器人自動(dòng)識(shí)別與抓取系統(tǒng)的結(jié)構(gòu),并在機(jī)器人裝配作業(yè)平臺(tái)上進(jìn)行了物體識(shí)別與抓取的實(shí)驗(yàn)研究。
      關(guān)鍵詞:機(jī)器人;視覺;超聲技術(shù);圖像識(shí)別

      視覺傳感器能直觀反映物體的外部信息,但單個(gè)攝像頭只能獲得物體的二維圖像,立體視覺雖能提供三維信息,但對于外形相同,僅深度有差別的物體難以識(shí)別(如有孔物體、階梯狀物等) ,且對環(huán)境光線有一定的要求。由于超聲傳感器具有對光線、物體材料等不敏感,結(jié)構(gòu)簡單,能直接獲取待測點(diǎn)至傳感器的距離等特點(diǎn),因此本文采用視覺與超聲測量相結(jié)合的方法,將二維圖像信息與超聲波傳感器獲取的深度信息進(jìn)行融合推斷,對待裝配工件進(jìn)行自動(dòng)識(shí)別與空間定位,并確定機(jī)械手末端執(zhí)行器的空間位置與姿態(tài),使其能在合適的部位準(zhǔn)確抓取工件。

      1 系統(tǒng)原理與結(jié)構(gòu)

      系統(tǒng)由機(jī)械手、CCD 視覺傳感器和超聲波傳感器及相應(yīng)的信號(hào)處理單元等構(gòu)成。CCD 安裝在機(jī)械手末端執(zhí)行器上,構(gòu)成手眼視覺,超聲波傳感器的接收和發(fā)送探頭也固定在機(jī)器人末端執(zhí)行器上,由CCD 獲取待識(shí)別和抓取物體的二維圖像,并引導(dǎo)超聲波傳感器獲取深度信息。系統(tǒng)結(jié)構(gòu)如圖1 所示。

      圖像處理主要完成對物體外形的準(zhǔn)確描述,包括以下幾個(gè)步驟:a. 圖像邊緣提取;b. 周線跟蹤;c. 特征點(diǎn)提??;d. 曲線分割及分段匹配;e. 圖形描述與識(shí)別。在提取物體圖像邊緣后,采用周線跟蹤進(jìn)行邊緣細(xì)化,去除偽邊緣點(diǎn)及噪聲點(diǎn),并對組成封閉曲線的邊緣點(diǎn)進(jìn)Freeman 編碼,記錄每一條鏈碼方向和曲線上各點(diǎn)的X-Y 坐標(biāo)值,便于進(jìn)一步對物體的幾何特性進(jìn)行分析。本研究對傳統(tǒng)的周線跟蹤算法中邊緣點(diǎn)的搜索方向與順序進(jìn)行了改進(jìn),并在搜索過程中采取了及時(shí)消除冗余點(diǎn)的方法,減小了數(shù)據(jù)量與運(yùn)算時(shí)間,而且具有較好的降噪及平滑效果。在提取圖像特征點(diǎn)時(shí),將多邊形近似法與計(jì)算曲率的方法相結(jié)合,可克服多邊形近似法易產(chǎn)生偽特征點(diǎn)和計(jì)算曲率法計(jì)算量過大的缺點(diǎn)。CCD 獲取的物體圖像經(jīng)處理后,可提取對象的某些特征,如物體的形心坐標(biāo)、面積、曲率、邊緣、角點(diǎn)及短軸方向等。根據(jù)這些特征信息,可得到對物體形狀的基本描述,在圖像處理的基礎(chǔ)上,由視覺信息引導(dǎo)超聲波傳感器對待測點(diǎn)的深度進(jìn)行測量,獲取物體的深度(高度) 信息,或沿工件的待測面移動(dòng),超聲波傳感器不斷采集距離信息,掃描得到距離曲線,根據(jù)距離曲線分析出工件的邊緣或外形[1 ] 。計(jì)算機(jī)將視覺信息和深度信息融合推斷后,進(jìn)行圖像匹配、識(shí)別,并控制機(jī)械手以合適的位姿準(zhǔn)確地抓取物體。

      2.1 工件圖像邊緣的提取

      復(fù)雜工件反映在圖像上常常不止一個(gè)灰度等級(jí),僅利用一個(gè)灰度閾值無法提取有意義的邊緣。

      若采用多閾值的方法,必然會(huì)增加計(jì)算時(shí)間和圖像處理的復(fù)雜程度。對于類別方差自動(dòng)門限法,增加門限值不僅會(huì)提高數(shù)據(jù)處理復(fù)雜程度,而且當(dāng)閾值多于2 個(gè)時(shí),算法的可靠性就會(huì)受到影響。為此采用了直接從灰度圖像提取邊緣的方法。圖像邊緣一般發(fā)生在灰度函數(shù)值不連續(xù)處,可用灰度函數(shù)的一階或二階導(dǎo)數(shù)求得。經(jīng)典的利用一階導(dǎo)數(shù)提取邊緣的方法有Robert s 算子、So2bel 算子等,利用二階導(dǎo)數(shù)提取邊緣的方法有Laplacian 算子和Marrs2Hilderth 算子等。通過對幾種算法的分析比較,認(rèn)為Sobel 算子不僅實(shí)現(xiàn)容易、運(yùn)算速度快,而且可提供最精確的邊緣方向估計(jì)。Sobel 算子由兩個(gè)3 ×3 相差90°的算子構(gòu)成,由這兩個(gè)算子同圖像卷積,可得到圖像的邊緣及其方向。對于數(shù)字圖像{ f ( i ,j ) } ,Sobel 算子可表示為:

      Gx(i,j)=f(i-1,j-1)+2f(i-1,j)+f(i-1,j+1)-f(i+1,j-1)-2f(i+1,j)-f(i+1,j+1);

      Gy(i,j)=f(i-1,j-1)+2f(i,j-1)+f(i+1,j-1)-f(i-1,j+1)-2f(i,j+1)-f(i+1,j+1).

      采用G1 = | Gx | + | Gy| 得到梯度幅值后,為減少所抽取的邊緣數(shù)目,可設(shè)置一個(gè)幅度門限,即只考慮對應(yīng)灰度變化較大的那些邊緣。再利用邊緣點(diǎn)具有局部幅度最大的特點(diǎn),將邊緣細(xì)化。利用Sobel 算子提取邊緣后,為了得到工件表面的尺寸信息,還必須提取圖像的角點(diǎn)[2 ] ,以便計(jì)算工件的邊長等特征信息。

      2.2 形心坐標(biāo)的確定

      圖像中形心點(diǎn)的計(jì)算通??赏ㄟ^兩種方法得出,一是通過區(qū)域處理求矩的方法計(jì)算形心坐標(biāo)[3 ] ;二是通過邊緣鏈碼積分計(jì)算。圖像的矩計(jì)算公式為:該算法較為簡單,且對任意圖形都適用,但需要結(jié)合像素點(diǎn)隸屬區(qū)域劃分算法進(jìn)行。

      2.3 軸向的確定

      為使機(jī)械手能以正確的姿態(tài)準(zhǔn)確地抓取物體,必須精確確定物體的軸向。在幾何學(xué)中,物體的長軸定義為通過物體形心點(diǎn)的一條直線,物體關(guān)于該直線的二階矩為最小值。設(shè)圖像中物體長軸與圖像平面X 軸正方向夾角為θ,規(guī)定| θ| ≤π/ 2 ,則物體關(guān)于該軸線的二階矩為

      該算法較為簡單,且對任意圖形都適用,但需要結(jié)合像素點(diǎn)隸屬區(qū)域劃分算法進(jìn)行。

      2.3 軸向的確定

      為使機(jī)械手能以正確的姿態(tài)準(zhǔn)確地抓取物體,必須精確確定物體的軸向。在幾何學(xué)中,物體的長軸定義為通過物體形心點(diǎn)的一條直線,物體關(guān)于該直線的二階矩為最小值。設(shè)圖像中物體長軸與圖像平面X 軸正方向夾角為θ,規(guī)定| θ| ≤π/ 2 ,則物體關(guān)于該軸線的二階矩為

      很明顯,基于二階慣性矩的軸向確定方法是對整個(gè)物體區(qū)域進(jìn)行運(yùn)算,且必須先確定像素點(diǎn)的隸屬區(qū)域,故運(yùn)算量較大。圖2 (a) 是用該算法確定的工件軸向。對于一些簡單形狀的物體,可采用如下簡單軸向估計(jì)算法:

      a. 確定物體的形心坐標(biāo);

      b. 確定物體邊緣輪廓閉合曲線前半段中離物體形心最近的點(diǎn),用最小二乘法估算該點(diǎn)的切線方向,設(shè)其與圖像平面X 軸正方向夾角為α1 ;

      c. 用同樣方法確定下半段曲線中對應(yīng)的切線方向α2 ;

      d. 物體軸向可粗略估計(jì)為θ= (α1 +α2) / 2.

      圖2 ( b) 是采用簡化算法得到的工件軸向圖。該算法僅對物體邊緣輪廓點(diǎn)進(jìn)行處理,使運(yùn)算時(shí)間大為減少。

      3 超聲深度檢測

      由于CCD 攝像頭獲取的圖像不能反映工件的深度信息,因此對于二維圖形相同,僅高度略有差異的工件,只用視覺信息不能正確識(shí)別,本文采用超聲波測距傳感器則可彌補(bǔ)這一不足。經(jīng)圖像處理得到工件的邊緣、形心等特征量后,引導(dǎo)機(jī)械手到達(dá)待測點(diǎn),對工件深度進(jìn)行測量,并融合視覺信號(hào)與超聲信號(hào),可得到較完整的工件信息。安裝在機(jī)器人末端執(zhí)行器上的超聲波傳感器由發(fā)射和接收探頭構(gòu)成,根據(jù)聲波反射的原理,檢測由待測點(diǎn)反射回的聲波信號(hào),經(jīng)處理后得到工件的深度信息。為了提高檢測精度,在接收單元電路中,采用了可變閾值檢測、峰值檢測、溫度補(bǔ)償和相位補(bǔ)償?shù)燃夹g(shù)[1 ] ,可獲得較高的檢測精度。對視場中兩個(gè)外形完全相同、高度相差0.1 mm的柱形工件,采用本文提出的融合圖像和深度信息的方法,可準(zhǔn)確識(shí)別與抓取。

      4 實(shí)驗(yàn)結(jié)果及結(jié)論

      在上述方法研究的基礎(chǔ)上,完成了在MOVEMASTER2EX機(jī)器人裝配作業(yè)平臺(tái)上進(jìn)行的物體識(shí)別與抓取實(shí)驗(yàn)。在自然光及一般照明條件下,對機(jī)器人裝配作業(yè)平臺(tái)上視場范圍內(nèi)任意放置的3~5 個(gè)不同形狀、大小的典型工件進(jìn)行自動(dòng)識(shí)別和抓取,結(jié)果表明,識(shí)別時(shí)間小于5 s(包括識(shí)別、定位與抓取過程機(jī)械手的移動(dòng)時(shí)間) ,定位誤差小于±2 mm ,并具有較好的通用性和可移植性。圖3 (a) ~ (d) 分別是待抓取工件識(shí)別過程的圖像。

      實(shí)驗(yàn)結(jié)果表明,采用本文提出的將機(jī)器人手- 眼視覺與超聲波測距相結(jié)合的檢測裝置,以及融合二維圖像信息與深度信息進(jìn)行工件識(shí)別與抓取的方法,可準(zhǔn)確對物體進(jìn)行識(shí)別與定位,具有算法簡單、計(jì)算量小、實(shí)時(shí)性好、可靠性高等特點(diǎn),可為機(jī)器人與環(huán)境交互提供物體形狀、類別及大小等信息,使機(jī)器人裝配作業(yè)能適應(yīng)各種復(fù)雜的環(huán)境與工藝過程,對實(shí)現(xiàn)工業(yè)生產(chǎn)過程的自動(dòng)化、柔性化、智能化有良好的應(yīng)用前景。

      實(shí)驗(yàn)結(jié)果表明,采用本文提出的將機(jī)器人手- 眼視覺與超聲波測距相結(jié)合的檢測裝置,以及融合二維圖像信息與深度信息進(jìn)行工件識(shí)別與抓取的方法,可準(zhǔn)確對物體進(jìn)行識(shí)別與定位,具有算法簡單、計(jì)算量小、實(shí)時(shí)性好、可靠性高等特點(diǎn),可為機(jī)器人與環(huán)境交互提供物體形狀、類別及大小等信息,使機(jī)器人裝配作業(yè)能適應(yīng)各種復(fù)雜的環(huán)境與工藝過程,對實(shí)現(xiàn)工業(yè)生產(chǎn)過程的自動(dòng)化、柔性化、智能化有良好的應(yīng)用前景。

      參考文獻(xiàn)
      [1 ] 楊勁松,王敏,黃心漢。超聲波可變閾值測距裝置.電子技術(shù)應(yīng)用,1998 ,24 (7) :7~9
      [2 ] 張小莉,王敏,黃心漢。一種有效的基于Freeman 鏈碼的角點(diǎn)檢測法。電子測量與儀器學(xué)報(bào),1999 ,13(2) :14~19
      [3 ] The C ,Chin R。On Image Analysis by the Method ofMoments。IEEE Trans。Pattern Anal。Mach。Intell。,1988 (10) :291~310

      下一篇: PLC、DCS、FCS三大控

      上一篇: 索爾維全系列Solef?PV

      推薦產(chǎn)品

      更多
      主站蜘蛛池模板: 亚洲精品综合一二三区在线| 国产AV综合影院| 亚洲国产欧洲综合997久久| 日韩综合在线观看| 色天使久久综合给合久久97色 | 一本久久a久久精品综合夜夜| 亚洲另类激情综合偷自拍| 久久综合鬼色88久久精品综合自在自线噜噜| 亚洲综合丁香婷婷六月香| 国产成人综合在线视频 | 久久久久AV综合网成人| 亚洲综合色一区二区三区| 伊人久久大香线蕉综合5g| 亚洲国产精品成人综合久久久 | 一本色道久久88亚洲精品综合 | 色噜噜狠狠狠狠色综合久一| 青青热久久久久综合精品| 亚洲欧美熟妇综合久久久久| 亚洲AV人无码综合在线观看| 天天干天天色综合网| 亚洲国产亚洲综合在线尤物| 国产综合无码一区二区三区| 色综合色国产热无码一| 色综合久久久久网| 色综合久久中文字幕无码| 狠狠色狠狠色综合伊人| 亚洲综合色区在线观看| 区二区三区激情综合 | 亚洲av日韩av综合| 浪潮AV色综合久久天堂| 久久狠狠色狠狠色综合| 国产综合色在线精品| 亚洲精品二区国产综合野狼| 亚洲婷婷五月综合狠狠爱| 少妇人妻综合久久中文字幕| 狠狠色狠狠色综合久久| 亚洲啪啪综合AV一区| 亚洲综合激情视频| 国产精品免费综合一区视频| 婷婷亚洲综合五月天小说在线| 综合久久久久久久综合网|