當前位置: 首頁 >
發布日期:2022-04-17 點擊率:68
最近有文章解析了因為追星儀和陀螺儀的出錯,加上科學家寫反噴氣代碼導致了造成了價值19億的一臺名為“瞳”的X射線太空望遠鏡被玩壞了。實際上,追星儀和陀螺儀實現的類似于VR中的光學定位及姿態捕捉。一直以來,大家都在說VR定位動捕技術難,那到底難在哪里呢?作者系VR行業從業者,本文將會探討下這個問題。
(圖片來自火星網)
我相信,“瞳”真實的毀滅原因一定比文章中描述的要復雜很多,我寫這篇文章也不是為了跟大家探討“瞳”,而是想跟大家聊一下由此事件引發的一些思考。
“瞳”和VR中的光學定位及姿態捕捉
瞳的追星儀,在文章中是這樣描述的“追星儀是衛星上一個判斷自己方位的儀器......總的來說就是一個小相機,通過跟蹤拍攝背景里一些亮的星星的位置... 用來判斷自己所指向的方位......”。
追星儀的定位技術大概是目標物體(即瞳本身)拍攝背景中的星星,根據得到的圖像及所識別出的星星的位置來獲取自身的方位信息。而瞳的陀螺儀則用來偵測瞳自身的空間姿態。所以,追星儀和陀螺儀實際上實現的類似于VR中的光學定位及姿態捕捉。
?。?) 光學定位技術
VR中的光學定位技術是利用攝像機拍攝目標物體,根據得到的目標圖像及攝像機自身的位置信息推算出目標物體的位置及姿態等信息。根據標記點發光技術不同,光學定位技術還分為主動式和被動式兩種。
具體實現流程:定位物體上布滿標記點,標記點可以自主發射光信號或者反射定位系統發射來的點信號,使得攝像頭拍攝的圖像中標記點與周圍環境可以明顯區分。攝像機捕捉到目標物上標記點后,將多臺攝像機從不同角度采集到的圖像傳輸到計算機中,再通過視覺算法過濾掉無用的信息,從而獲得標記點的位置。該定位法需要多個 CCD 對目標進行跟蹤定位,需要至少兩幅以上的具有相同標記點的圖像進行亞像素提取、匹配操作計算出目標物的空間位置。實現流程圖如下:
光學定位技術實現流程
目前,光學定位技術在國際上最受認可的是Optitrack。OptiTrack定位方案適用于游戲與動畫制作,運動跟蹤,力學分析,以及投影映射等多種應用方向,在VR行業有著非常大的影響力。
(2)慣性動作捕捉
陀螺儀的工作原理是通過測量三維坐標系內陀螺轉子的垂直軸與固定方向之間的夾角,并計算角速度,通過夾角和角速度來判別物體在三維空間的運動狀態。
它的強項在于測量設備自身的旋轉運動。陀螺儀用于姿態捕捉,集成了加速度計和磁力計后,共同應用在慣性動作捕捉系統。
慣性動作捕捉系統需要在運動物體的重要節點佩戴集成加速度計,陀螺儀和磁力計等慣性傳感器設備,傳感器設備捕捉目標物體的運動數據,包括身體部位的姿態、方位等信息,再將這些數據通過數據傳輸設備傳輸到數據處理設備中,經過數據修正、處理后,最終建立起三維模型,并使得三維模型隨著運動物體真正、自然地運動起來。
VR定位動捕技術到底難在哪里?
前文提到,“瞳”最終沒有避免毀滅的命運,當然我們得說這次毀滅有一些人為的可避免的錯誤造成,但無法否認的事實是它耗費了人類價值19億的資源。這也從側面證實了定位及動捕技術難度之高。
當然,應用于VR行業中時,對于精度等的要求不會有“瞳”那么高,但為了能給使用者帶來超強沉浸感體驗,定位及動捕的精度、延遲、刷新率等也一定要達到非常高的水平。很多人知道2016年被稱為VR的元年,但是又有多少人知道VR自1963年被提出至今耗費了多少科學家、工程師的心血?
讀者可能會有疑問,大家一直在說VR定位動捕技術難,那到底難在哪里呢?接下來筆者就來談談VR定位動捕技術的
下一篇: PLC、DCS、FCS三大控
上一篇: 索爾維全系列Solef?PV