<rt id="m4md3"></rt>
  • <bdo id="m4md3"><meter id="m4md3"></meter></bdo>
  • <label id="m4md3"></label>
      <center id="m4md3"><optgroup id="m4md3"></optgroup></center>
      產(chǎn)品分類

      當(dāng)前位置: 首頁 > 傳感測(cè)量產(chǎn)品 > 工業(yè)傳感器 > 電位器 > 碳膜電位器

      類型分類:
      科普知識(shí)
      數(shù)據(jù)分類:
      碳膜電位器

      關(guān)于積分型ADC的一些知識(shí)

      發(fā)布日期:2022-04-26 點(diǎn)擊率:68

      站長(zhǎng)統(tǒng)計(jì)

      【導(dǎo)讀】這種類型的AD轉(zhuǎn)換器可以獲得高分辨率,但是通常這樣做會(huì)犧牲速度。因此,這些轉(zhuǎn)換器不適用于音頻或信號(hào)處理的場(chǎng)合應(yīng)用。他們通常的典型應(yīng)用就是數(shù)字電壓計(jì)和其他需要高精度測(cè)量的儀表。

       

      一個(gè)積分型ADC是一種通過使用積分器將未知的輸入電壓轉(zhuǎn)換成數(shù)字表示的一種模-數(shù)轉(zhuǎn)換器。在它最基本的實(shí)現(xiàn)中,這個(gè)未知的輸入電壓是被施加在積分器的輸入端,并且持續(xù)一個(gè)固定的時(shí)間段(所謂的上升階段)。然后用一個(gè)已知的反向電壓施加到積分器,這樣持續(xù)到積分器輸出歸零(所謂的下降階段)。這樣,輸入電壓的計(jì)算結(jié)果實(shí)際是參考電壓的一個(gè)函數(shù),定時(shí)上升階段時(shí)間和測(cè)得的下降階段時(shí)間。下降階段時(shí)間的測(cè)量通常是以轉(zhuǎn)換器的時(shí)鐘為單位,所以積分時(shí)間越長(zhǎng),分辨率越高。同樣的,轉(zhuǎn)換器的速度可以靠犧牲分辨率來獲得提升。

       

      這種類型的AD轉(zhuǎn)換器可以獲得高分辨率,但是通常這樣做會(huì)犧牲速度。因此,這些轉(zhuǎn)換器不適用于音頻或信號(hào)處理的場(chǎng)合應(yīng)用。他們通常的典型應(yīng)用就是數(shù)字電壓計(jì)和其他需要高精度測(cè)量的儀表。

       

      ========基本設(shè)計(jì)=======

       

      最基本的積分型ADC電路包含:

       

      ● 一個(gè)積分器、

      ● 一個(gè)選擇開關(guān)(用來選在被測(cè)電壓和參考電壓)、

      ● 一個(gè)定時(shí)器(用來決定對(duì)被測(cè)電壓的積分時(shí)間長(zhǎng)度和測(cè)量參考電壓積分消耗時(shí)間)、

      ● 一個(gè)比較器(用來進(jìn)行過零檢測(cè))、

      ● 一個(gè)控制器、

      ● 一個(gè)放電開關(guān)(這個(gè)根據(jù)實(shí)現(xiàn)形式可有可無,主要用來對(duì)積分電容進(jìn)行放電,與積分電容并聯(lián))。

       

      上面的所有開關(guān)都由轉(zhuǎn)換器的控制器(通常是微處理器或?qū)S玫目刂七壿?,控制器的輸入包括一個(gè)時(shí)鐘信號(hào)(用來測(cè)量時(shí)間)和一個(gè)比較器的輸出信號(hào)(用來檢測(cè)積分器的輸出是否歸零)

       

      轉(zhuǎn)換過程分兩個(gè)階段:上升階段和下降階段。在上升階段,積分器的輸入是被測(cè)電壓,在下降階段,積分器的輸入是已知的參考電壓。在上升階段中,開關(guān)選擇被測(cè)電壓進(jìn)入積分器,積分器持續(xù)一個(gè)固定的時(shí)間段進(jìn)行積分,在積分電容上面積累電荷。在下降階段,開關(guān)選擇參考電壓進(jìn)入積分器,在這階段測(cè)量積分器輸入歸零的時(shí)間。(譯者:總結(jié)起來就是先定時(shí)積分,再定值反向積分,測(cè)量反向積分時(shí)間),電路如右圖:

       

      http://www.cntronics.com/art/artinfo/id/80037733

       

      為了使積分器向相反方向積分,參考電壓需要和被測(cè)電壓的極性相反。在大多數(shù)情況下,如果被測(cè)電壓為正,那么參考電壓就為負(fù)。為了能夠處理正負(fù)電壓輸入的情況,需要一個(gè)正向和一個(gè)負(fù)向的參考電壓。具體選擇哪一個(gè)參考電壓取決于上升階段積分結(jié)束后積分器的輸出電壓極性。也就是說,如果在上升階段結(jié)束時(shí),積分器輸出是負(fù),則需要接入一個(gè)負(fù)向參考電壓(譯者:因?yàn)榻拥氖欠e分器的反向輸入端),如果積分器輸出是正,則需要接入一個(gè)正向參考電壓。

       

      積分器輸出的基本公式如下(假設(shè)是一個(gè)恒定輸入):

       

      http://www.cntronics.com/art/artinfo/id/80037733

       

      假設(shè)在每個(gè)轉(zhuǎn)換過程的初始電壓都是零,并且積分器在下降階段結(jié)束時(shí)的輸出電壓也是零,我們就可以得到下面兩個(gè)等式來表示積分器的兩個(gè)階段的輸出:

       

      http://www.cntronics.com/art/artinfo/id/80037733

       

      結(jié)合上面兩個(gè)等式,可以解除Vin,也就是得到了被測(cè)電壓的公式:

       

      http://www.cntronics.com/art/artinfo/id/80037733

       

      從這個(gè)公式可以看出,雙斜坡積分ADC的好處之一很明顯:測(cè)量結(jié)果與電路元件的值(其中的R和C)無關(guān)。然而,這并不意味著,R和C在雙斜坡積分ADC中不重要(下面將解釋這一問題)。

       

      注意到在下圖中,在上升階段電壓是向上升高的,在下降階段電壓是向下降低的。在實(shí)際應(yīng)用中,由于比較器使用的是運(yùn)放的負(fù)反饋,施加一個(gè)正向電壓Vin實(shí)際會(huì)使輸出下降,

       

      http://www.cntronics.com/art/artinfo/id/80037733

       

      所以這里的“上”和“下”可以理解為積分電容充電的過程。

       

      雙斜坡積分型ADC的分辨率主要由下降階段的時(shí)間長(zhǎng)度和時(shí)間測(cè)量分辨率(例如控制器時(shí)鐘的頻率)來決定的(譯者:也就是速度和分辨率這一對(duì)矛盾的原因)。期望的分辨率(用bits數(shù)表示) 是滿量程輸入時(shí),下降時(shí)間的最小長(zhǎng)度。(Vin = -Vref)

       

      http://www.cntronics.com/art/artinfo/id/80037733

       

      在滿程輸入的測(cè)量過程中,積分器輸出的斜坡在上升和下降階段是相同的(方向相反)。也就是上升和下降階段的時(shí)間相等(http://www.cntronics.com/art/artinfo/id/80037733),總的測(cè)量時(shí)間則為http://www.cntronics.com/art/artinfo/id/80037733

      。因此,滿程輸入的總的測(cè)量時(shí)間是基于期望的分辨率和控制器的時(shí)鐘頻率的。

       

      如下式:

       

      舉個(gè)栗子:如果期望得到16bits的分辨率,控制器時(shí)鐘頻率是10MHz,那么測(cè)量時(shí)間計(jì)算下來就是13.1ms(也即是每秒鐘76個(gè)采樣)。采樣時(shí)間可以靠犧牲分辨率得到改善。如果分辨率降低到10bits,那么在同樣的10MHz的時(shí)鐘頻率下,測(cè)量時(shí)間就降低到僅為0.2ms(每秒鐘4900個(gè)采樣)。

       

      ========局限性=======

       

      雙斜坡積分型ADC有幾個(gè)局限。對(duì)于基本的雙斜坡ADC來說,靠使用更長(zhǎng)的測(cè)量時(shí)間或更高的時(shí)鐘頻率來任意提高分辨率是不可能的。分辨率被以下條件所限制:

       

      1. 積分器運(yùn)放的范圍。運(yùn)放的軌電壓限制了積分器的輸出電壓。長(zhǎng)時(shí)間的積分器輸入會(huì)導(dǎo)致輸出被限制到一個(gè)最大值,是的任何基于下降時(shí)間的計(jì)算都沒有意義。因此,應(yīng)基于運(yùn)放的軌電壓、參考電壓和期望的滿程被測(cè)電壓來小心地選擇積分器的電阻和電容,并且最長(zhǎng)的上升時(shí)間也應(yīng)滿足期望的分辨率。(譯者:實(shí)際就是講積分器飽和的問題,后面的電荷平衡技術(shù)將解決這個(gè)問題)

       

      2. 作為過零檢測(cè)的比較器的準(zhǔn)確度。寬帶電路噪聲限值了比較器精確檢測(cè)積分器輸出歸零的能力。Goerke建議一個(gè)典型的限制是比較器分辨率1mV。

       

      3. 積分電容的品質(zhì)。盡管積分電容不需要完美的線性,但卻需要時(shí)間恒定(time-invariant)。介電吸收(Dielectric absorption)會(huì)導(dǎo)致嚴(yán)重問題。(譯者:個(gè)人認(rèn)為此處應(yīng)為介質(zhì)吸收。取一個(gè)數(shù)值較大的鉭電容,充電到10V左右,用一個(gè)100Ω的電阻即刻跨接在它兩端,迅速放電。移去電阻,用高阻抗的電壓表觀察電容兩端的電壓,可以看到電容又充電,幾秒后達(dá)到1V左右。介質(zhì)吸收現(xiàn)象可能與介質(zhì)表面的殘留極化有關(guān)。所以積分型ADC的電容應(yīng)選擇高質(zhì)量、低介質(zhì)吸收的電容,如特氟龍介質(zhì))

       

      ========改善=======

       

      基本雙斜坡積分型ADC的設(shè)計(jì)在轉(zhuǎn)換速度和分辨率方面有限制。很對(duì)針對(duì)基本設(shè)計(jì)的修改在某種程度上解決了這些問題。

       

      針對(duì)上升階段的改進(jìn)

       

      改進(jìn)的雙斜坡

       

      基本雙斜坡設(shè)計(jì)的上升階段會(huì)將被測(cè)電壓固定積分一段時(shí)間。也就是說,它最終會(huì)在積分電容上建立一個(gè)不確定的電荷量。下降階段測(cè)量這個(gè)不確定的電荷來確定被測(cè)電壓。對(duì)于一個(gè)滿程輸入,測(cè)量時(shí)間的一半會(huì)被花費(fèi)到上升階段。對(duì)于更小的輸入,相對(duì)總測(cè)量時(shí)間的一個(gè)更大比例的時(shí)間會(huì)被花費(fèi)到上升階段。所以,減少花費(fèi)到上升階段的時(shí)間可以顯著降低總的測(cè)量時(shí)間。(譯者:此處以圖示似乎更容易說明問題。見下圖)

       

      http://www.cntronics.com/art/artinfo/id/80037733

       

      一個(gè)簡(jiǎn)單的減少上升時(shí)間的方法就是增加充電電荷的積累速度,這可以靠減少輸入電阻值來實(shí)現(xiàn)。這依然是要積累同等數(shù)量的電荷,只是需要的時(shí)間更少。在下降階段使用同樣的算法,參考右圖,則得到下面的公式:

       

      http://www.cntronics.com/art/artinfo/id/80037733

      http://www.cntronics.com/art/artinfo/id/80037733

       

      與基本雙斜坡積分轉(zhuǎn)換器不同,此等式與積分電阻有關(guān)。或者,更重要的是,它與兩個(gè)積分電阻的比值有關(guān)。這種改進(jìn)方法不能改進(jìn)轉(zhuǎn)換器的分辨率(因?yàn)樗鼪]有解決上面提到的分辨率的限值)。

       

       

      推薦閱讀:

       

      通過溫度開關(guān)保護(hù)室外攝像頭免受極端天氣的影響

      貿(mào)澤與TE聯(lián)手推出全新電子書,探索機(jī)器人發(fā)展趨勢(shì)

      霍爾效應(yīng)的傳感應(yīng)用——電流檢測(cè)和位置檢測(cè)區(qū)別指南

      從CANopen到CANopen FD的技術(shù)升級(jí)

      貿(mào)澤《讓創(chuàng)意走進(jìn)現(xiàn)實(shí)》系列推出新一期電子書,探索面向制造的設(shè)計(jì)階段所面臨的挑戰(zhàn)

      下一篇: PLC、DCS、FCS三大控

      上一篇: MATLAB和Simulink在航

      主站蜘蛛池模板: 亚洲色偷偷综合亚洲AV伊人蜜桃| 色婷婷久久综合中文久久蜜桃av | 亚洲国产综合精品中文第一区| 国产成人综合色视频精品| 色99久久久久高潮综合影院| 色综合小说久久综合图片| 亚洲伊人成无码综合网 | 色婷婷综合和线在线| 伊人色综合视频一区二区三区| 亚洲精品国产第一综合99久久| 午夜激情影院综合| 亚洲欧洲日韩国产综合在线二区| 久久99国产综合精品| 天天干天天色综合网| 国产综合在线观看| 狠狠色丁香久久婷婷综合图片| 日本久久综合久久综合| 国内偷自视频区视频综合| 亚洲国产成人久久综合| 久久久久青草大香线综合精品| 一本色道久久综合无码人妻| 青青草原综合久久大伊人导航| 久久国产精品亚洲综合| 九月婷婷综合婷婷| 狠狠综合亚洲综合亚洲色| 久久精品亚洲综合专区| 区三区激情福利综合中文字幕在线一区亚洲视频1 | 国产成人综合网在线观看| 久久婷婷五月综合97色直播| 综合五月激情二区视频| 18和谐综合色区| 久久婷婷五月国产色综合| 99久久国产综合精品女同图片| 女人和拘做受全程看视频日本综合a一区二区视频 | 狠狠色丁香久久综合五月| 国产成人综合日韩精品无码不卡 | 亚洲第一页综合图片自拍| 色综合天天综合网国产成人| 亚洲狠狠成人综合网| 亚洲av永久综合在线观看尤物 | 狠狠综合久久综合88亚洲|